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Since the first secondary and tertiary alkoxycarbonium ions were prepared by Maerwein, et 

1 
al , further isolation, observation, and spectral studies of tertiary, secondary 2-6 and primary' 

examples have been reported including dioxolenium cations 396 . 

Alkoxycarbonium ions possess large gaseous stabilization energies compared to the methyl 

cation8". The stabilization energy of CH30CH2+ is 68 kcal compared to 35 kcal for CH3CH2+8. 

Stable trialkylthiomethyl cations have also been reported 
10-12 . 

We report the cyclization of ally1 and methallyl esters and thiol esters to cyclic dioxo- 

lenium and oxthiolenium cations in strong proton acids. In 96, 80, and 60% H2S04 and FS03H, 

methallylacetate, methallylcarbamate and methallylthiolacetate are quantitatively cyclized to 

the 2,4,4-trimethyldioxolenium cation (I) the 2-amino-4,4-dimethyldioxolenium cation (II), and 

the 2,5,5-trimethyloxthiolenium cation (III), respectively. Cyclization of allylacetate in 96% 

H2S04 gave 30% of the 2,4-dimethyldioxolenium cation, IV, and 70% CH3COOH +. 
2 

Ions I-IV were 

identified by their nmr spectra in acid (summarized in Table l).* 

CH, 
CH 
I3 : 

CH2=C-CH2-0-C-CH3 I 

*(a) Acid Catalyzed Cyclization Reactions II. For paper I in this series see C. U. 
Pittman, Jr. and S. P. McManus, Chem. Comm., in press; (b) acknowledgment is made to the donors 
of the Petroleum Research Fund (Grant 3501-B to S. P. M.) administered by the American Chemical 
Society for partial support of this work. 

*x 
Nmr spectra were obtained on a Varian Associates HA-100 instrument. Spectra summarized 

in Table I were well resolved and devoid of impurity bands. Comparison of these spectra with 
those reported in ref. 2 and 3 serve to definitively establish their structure. Chemical shifts 
are relative to Tetramethylsilane in internal capilary tubes after making bulk susceptibility 
corrections. 
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FH3 51 
CH2X-CH2-O-C-NH2 

s 
CH2=Cli-CH2-0-C-CH3 H+ + CH3CCOH2+ 

H3 I” 

IIb 

Ions I, III, and IV decomposed to CH3COOH2+ on heating in H2S04 and D2S04. The rate of 

cleavage is markedly facilitated as the acidity decreases. * In 96% H2S04 ions I-IV were stable 

indefinitely at 30°C and for at least 20 minutes at 70'. At 120' cleavage of I is complete in 

3 min., and III is 90% cleaved in 5 min. However, II, which, is stabilized by charge delocal- 

ization (II,* IIb)3, is stable at 120° in 96% H2S04. In 80% H2S04, I is 75% cleaved at 66'C 

in 29 min. and rapidly destroyed at 120'13, but II is stable at 74' and only 20% cleaved after 

6 min. at 122'. In 60% H2S04, I is 100% cleaved within 5 min. and III is 47% gone after 6 min. 

at 66O. 
Table I 

H1 Nuclear Magnetic Resonance Shifts of Ions I-IV in 
96% H,SO4 (Hz downfield from TMS)a 

Ion 

I 
II 
III 
IVC 

_. - 

Methyl Methyls Hydrogens 
at C-2 at C-4 at C-5 

321 229 544 
b 224 526 

338 237 438 
324 226 532 

doublet .J=6Hz triplet J=9Hz 
586 
triplet J=9Hz 

a Unless otherwise noted all bands were sharp singlets. 
b The hydrogen6 on nitrogen appear as a rounded singlet at 872 HI. 
' The hydrogen at C-4 is a multiplet centered at 626 Hz. 

Only one dsuterium was incorporated into ions I-IV (at a C-4 methyl group) when they were 

generated in 96% D2S04 (hydrogens at nitrogen completely exchanged in II). 

* 
The appearance of CH3COOH2+ was followed by the growth of its CH3 nmr band at 312 He down- 

field from TMS. When CH3COOH was added to a solution of ion I or III prior to cleavage, the CH3 
group appeared as a sharp singlet at 312 Hz; its intensity increased during the course of fis- 
sion. The addition of CHyXOH to an H2SO4 solution of the cleavage products from I, III, or IV 
resulted in an increase in intensity of the then prominent 312 Hz band. 
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No further deuterium was incorporated into I-IV after 15 min. at 70'. Ion II incorporated no 

more deuterium after 2 min. at 128'. Thus, ions I-IV are not in equilibrium with their precur- 

sors. During cleavage of I and III to CH3CCOD2+ in both 96% (1200) or 65% (57') D2S04, no 

H-D exchange occurred in the fraction of ions remaining uncleaved at any time.* The CH3COOD2+ 

formed, both in 96 and 65% D2S04, incorporated no deuterium into the methyl group and resisted 

H-D exchange after 15 min. at 120'. 

The dependence of cleavage rate on acidity and the incorporation of a single deuterium in- 

to ions I-IV on cyclization in 96% D2S04 sre in accord with cyclization (or ring opening) pro- 

ceeding with oxygen neighboring group participation during protonation as represented by tran- 

sition state V. Acceleration of the solvolysis rates of halides and sulfonates have previously 
13-16 

been sited as evidence for carbonyl oxygen participation in related systems . Winstein16, 

for example, isolated cyclohexeneacetoxonium tetrafluoroborate. 

Path 6 

A/ + xyy k$ 
0 

Where Y = alkyl, NH2 VI k4 

X=OorS 

As acidity decreases, the H20 activity sharply increases. Water could function as the 

base promoting the ring opening by path A. In path B constants k3 and k 4 would be independent 

+k 
of acidity to a first approximation , but the rate of protonation will increase, and the rate 

of deprotonation of VI will decrease as acidity increases. Thus, a clear choice betveen paths 

A and B is not yet possible. However, invoking the intermediacy of VI requires that the acti- 

vation energy leading to deprotonation of VI must be greater than that of its cyclization. 

* 
The area ratio of methyl, gem-dimethyl, and methylene nmr bands of ions I and III re- 

mained 3:6:2 throughout cleavage. 

*In this intramolecular cyclisstion the relative salvation energies of VI compared to 
Ions I-IV and to the transition state between them in these highly ionic media should not 
change drastically. 
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We suggest that CH3COOH2' is generated by ring opening to the methallyl (or allyl) de- 

rivatives followed by AAL- is fission. 

Attempts to cyclize several acetates and benzoates of secondary allylic alcohols* in 

96% H2S04 in esch case led to immediate quantitative cleavage. AAL- fission of these es- 

ters would generate CIi3COOH2+ and secondary allylic carbonium ions which are unstable in 

96% H2S04 and cascade to complex mixture of cyclopentenyl cations.** 

* Included in this series were J-scetoxy-pentene-1, 3-benzoyloxypentene-1, 3-acetoxy-2- 
methylpentene-1, and 2-scetoxy-2-methyl-2-pentene. 

*Cyclopentenyl cations sre rapidly generated from mono, di, and trisubstituted. allylic 
carbonium ions in 962 H2S04 (ref. 17, 18). The characteristic nmr pattern of a mixture of 
cyclopentenyl cations was observed in 962 H2S04 after cleavage of ions I, II, IV and the esters 
in the footnote above. 
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